skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Summary Immunofocusing on conserved, subdominant epitopes is critical for vaccines against highly diverse viruses such as HIV-1, influenza, and SARS-CoV-2. The eight-residue N-terminus of the HIV-1 fusion peptide (FP) is one such example of a promising yet small target. We developed new FP immunogens using three alphavirus-like particles (VLPs) and introduced additional glycans to mask shared carrier-specific epitopes. In two independent guinea pig studies, sequential immunization with heterologous carriers enhanced FP-directed antibody titers, which were further improved with glycan engineering. Separately, using diverse FP variants sharing the same N-terminal six amino acids increased neutralizing antibody titers. When combined, these two strategies led to higher FP-directed titers and, after Env trimer boosting, induced FP-directed neutralizing antibodies against multi-clade wild-type HIV-1 in nearly all animals. These findings established the importance of minimizing recurrent off-target epitopes across immunizations and support the engineered VLPs as a promising platform for peptide immunization. HighlightsNovel HIV-1 fusion peptide immunogens using glycan-engineered alphavirus-like particlesImproved FP-directed response by minimizing recurrent carrier-specific epitopes across immunizationsImproved neutralizing response by sequential immunization with diverse FP variantsFP-directed antibodies neutralizing multi-clade wildtype viruses in nearly all animals 
    more » « less
    Free, publicly-accessible full text available May 5, 2026
  3. Reconfigurable intelligent surface (RIS) technology is emerging as a promising technique for performance enhancement for next-generation wireless networks. This paper investigates the physical layer security of an RIS-assisted multiple-antenna communication system in the presence of random spatially distributed eavesdroppers. The RIS-to-ground channels are assumed to experience Rician fading. Using stochastic geometry, exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and closed-form expressions for the secrecy outage probability (SOP) and the ergodic secrecy capacity (ESC) are obtained to provide insightful guidelines for system design. First, the secrecy diversity order is obtained as 2α2 , where α2 denotes the path loss exponent of the RIS-to-ground links. Then, it is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, N, and the impact of the number of transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. Moreover, it is also found that the density of randomly located eavesdroppers, λe , has an additive effect on the asymptotic ESC performance given by log2(1/λe) . Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations. 
    more » « less
  4. In this paper, we consider the physical layer security of an RIS-assisted multiple-antenna communication system with randomly located eavesdroppers. The exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and a closed-form expression for the secrecy outage probability (SOP) is obtained. It is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, and the impact of the transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. We also perform an analytical study demonstrating that the secrecy diversity order depends on the path loss exponent of the RIS-to-ground links. Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations. 
    more » « less
  5. Abstract One key challenge encountered in single-cell data clustering is to combine clustering results of data sets acquired from multiple sources. We propose to represent the clustering result of each data set by a Gaussian mixture model (GMM) and produce an integrated result based on the notion of Wasserstein barycenter. However, the precise barycenter of GMMs, a distribution on the same sample space, is computationally infeasible to solve. Importantly, the barycenter of GMMs may not be a GMM containing a reasonable number of components. We thus propose to use the minimized aggregated Wasserstein (MAW) distance to approximate the Wasserstein metric and develop a new algorithm for computing the barycenter of GMMs under MAW. Recent theoretical advances further justify using the MAW distance as an approximation for the Wasserstein metric between GMMs. We also prove that the MAW barycenter of GMMs has the same expectation as the Wasserstein barycenter. Our proposed algorithm for clustering integration scales well with the data dimension and the number of mixture components, with complexity independent of data size. We demonstrate that the new method achieves better clustering results on several single-cell RNA-seq data sets than some other popular methods. 
    more » « less
  6. null (Ed.)
  7. Abstract Plasmonic structural color, in which vivid colors are generated via resonant nanostructures made of common plasmonic materials, such as noble metals have fueled worldwide interest in backlight-free displays. However, plasmonic colors that were withstanding ultrahigh temperatures without damage remain an unmet challenge due to the low melting point of noble metals. Here, we report the refractory hafnium nitride (HfN) plasmonic crystals that can generate full-visible color with a high image resolution of ∼63,500 dpi while withstanding a high temperature (900 °C). Plasmonic colors that reflect visible light could be attributed to the unique features in plasmonic HfN, a high bulk plasmon frequency of 3.1 eV, whichcould support localized surface plasmon resonance (LSPR) in the visible range. By tuning the wavelength of the LSPR, the reflective optical response can be controlled to generate the colors from blue to red across a wide gamut. The novel refractory plasmonic colors pave the way for emerging applications ranging from reflective displays to solar energy harvesting systems. 
    more » « less